Exercise 72

An object with weight W is dragged along a horizontal plane by a force acting along a rope attached to the object. If the rope makes an angle θ with the plane, then the magnitude of the force is

$$
F=\frac{\mu W}{\mu \sin \theta+\cos \theta}
$$

where μ is a positive constant called the coefficient of friction and where $0 \leq \theta \leq \pi / 2$. Show that F is minimized when $\tan \theta=\mu$.

Solution

The domain of the function is $0 \leq \theta \leq \pi / 2$. Take the derivative.

$$
\begin{aligned}
F^{\prime}(\theta) & =\frac{d}{d \theta}\left(\frac{\mu W}{\mu \sin \theta+\cos \theta}\right) \\
& =\frac{\left[\frac{d}{d \theta}(\mu W)\right](\mu \sin \theta+\cos \theta)-\left[\frac{d}{d \theta}(\mu \sin \theta+\cos \theta)\right](\mu W)}{(\mu \sin \theta+\cos \theta)^{2}} \\
& =\frac{(0)(\mu \sin \theta+\cos \theta)-(\mu \cos \theta-\sin \theta)(\mu W)}{(\mu \sin \theta+\cos \theta)^{2}} \\
& =-\frac{\mu W(\mu \cos \theta-\sin \theta)}{(\mu \sin \theta+\cos \theta)^{2}}
\end{aligned}
$$

Set $F^{\prime}(\theta)=0$ and solve for θ.

$$
\begin{gathered}
-\frac{\mu W(\mu \cos \theta-\sin \theta)}{(\mu \sin \theta+\cos \theta)^{2}}=0 \\
\mu W(\mu \cos \theta-\sin \theta)=0 \\
\mu \cos \theta-\sin \theta=0 \\
\mu \cos \theta=\sin \theta \\
\mu=\tan \theta \\
\theta=\tan ^{-1} \mu
\end{gathered}
$$

μ is a positive number, so $\theta=\tan ^{-1} \mu$ is within the interval $0 \leq \theta \leq \pi / 2$. In order to evaluate the function here,
draw the implied right triangle.

$$
\sin \theta=\frac{\mu}{\sqrt{\mu^{2}+1}} \quad \cos \theta=\frac{1}{\sqrt{\mu^{2}+1}}
$$

Evaluate the function at $\theta=\tan ^{-1} \mu$.

$$
F\left(\tan ^{-1} \mu\right)=\frac{\mu W}{\mu\left(\frac{\mu}{\sqrt{\mu^{2}+1}}\right)+\left(\frac{1}{\sqrt{\mu^{2}+1}}\right)}=\frac{\mu W}{\frac{\mu^{2}+1}{\sqrt{\mu^{2}+1}}}=\frac{\mu W}{\sqrt{\mu^{2}+1}} \quad \text { (absolute minimum) }
$$

Evaluate the function at the endpoints.

$$
\begin{aligned}
F(0) & =\frac{\mu W}{\mu \sin (0)+\cos (0)}=\mu W \\
F\left(\frac{\pi}{2}\right) & =\frac{\mu W}{\mu \sin \frac{\pi}{2}+\cos \frac{\pi}{2}}=W
\end{aligned}
$$

(absolute maximum)

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $0 \leq \theta \leq \pi / 2$. Therefore, F is minimized when $\theta=\tan ^{-1} \mu$, that is,

$$
\tan \theta=\mu
$$

